TRASMETTITORI di PRESSIONE DIFFERENZIALE SERIE PD39X

Nelle applicazioni con una pressione differenziale maggiore del 5% rispetto al campo massimo di pressione standard, la misurazione della pressione differenziale con due sensori di pressione assoluta offre vantaggi maggiori rispetto ai metodi convenzionali di misurazione della pressione differenziale (come la Serie PD-10).

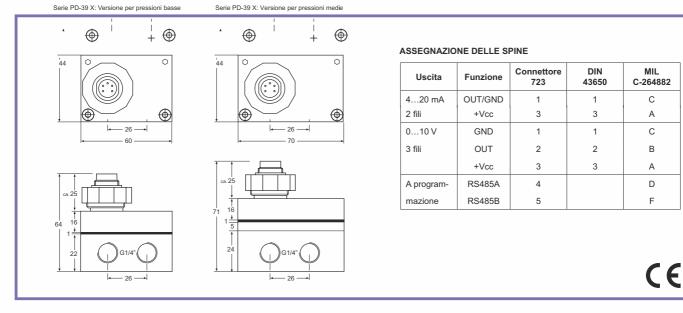
La Serie PD-39X non misura direttamente la pressione differenziale – bensì utilizza due sensori di pressione assoluta per rilevare la misurazione in maniera indiretta. Oltre che a ridurre i costi, questo trasmettitore di pressione differenziale è anche più robusto in relazione al sovraccarico non bilanciato (unilaterale). Il campo di pressione differenziale dovrebbe essere pari ad almeno il 5% del campo di pressione standard. Ogni lato della pressione ha due attacchi di raccordo, cosicché il PD-39X si può utilizzare facilmente nelle linee di pressione..

In tal modo è anche possibile misurare la pressione differenziale in maniera esatta se il rapporto campo di pressione standard / pressione differenziale è elevato; questa serie si avvale inoltre della collaudata tecnologia basata su microprocessore che è utilizzata nella Serie 30 X. Tutti gli errori riproducibili del sensore di pressione (ovvero le non-linearità e le dipendenze dalla temperatura) sono eliminate interamente grazie alla compensazione matematica degli errori. I segnali del sensore sono misurati con un convertitore A/D a 16 bit, cosicché si possono misurare i singoli campi di pressione standard con un'accuratezza dello 0,05%FS lungo l'intero campo di pressione e di temperatura.

Interfaccia Digitale

- I trasmettitori sono dotati di un interfaccia semi-duplex RS485 a due cavi, compatibile con il sistema bus, che prende a modello il "MODBUS RTU". La KELLER offre convertitori ad interfaccia verso RS232 o USB per l'utilizzo a tal scopo. Il programma READ30/PROG30 e il protocollo sono disponibili gratuitamente. L'interfaccia offre le seguenti funzioni:
- Lettura dei valori di pressione e di temperatura per entrambi i sensori. Ciò consente di leggere non solo la pressione differenziale ma anche i due campi di pressione standard.
- Taratura dei punti nulli e amplificazione.
- Graduazione dell'uscita analogica rispetto ai diversi campi di pressione o alle diverse unità di misura.
- Impostazioni di configurazione quali frequenza di misurazione, filtro passa-basso (LP), indirizzo bus, ecc.
- Lettura di informazioni quali il numero di serie, i campi compensati di pressione e di temperatura, ecc.

Uscita analogica


L'uscita analogica è graduabile liberamente tramite l'interfaccia. Per le misurazioni dei flussi è possibile anche produrre in uscita la radice della pressione differenziale. E' possibile produrre in uscita il valore calcolato tramite un interfaccia analogico (0...10 V oppure 4...20 mA).

Versione per pressioni basse

Versione per pressioni medie

TRASMETTITORI di PRESSIONE DIFFERENZIALE SERIE PD39X

SPECIFICHE

Campi di Pressione Standard (FS) e Sovrapressione in Bar

Versione	Serie 3	Serie 39 X per Pressioni Basse			Serie 39 X per Pressioni Medie	
Campi di pressione standard	3	10	25	100	300	
Sovrapressione	10	20	40	200	450	
Campi di pressione differenziale	'	Tutti i campi sono graduabili all'interno del campo di pressione standard.				

max pressione misurabile per ogni attacco di raccordo della pressione

Temperatura di manutenzione / di esercizio $-40...100\,^{\circ}\text{C}$ Campo compensato standard $-10...80\,^{\circ}\text{C}$ Fascia di errore $^{(1)}{}^{(2)}$ $\leq 0,05\,^{\circ}\text{FS}$ standard $\leq 0,1\,^{\circ}\text{FS}$ max. Frequenza effettiva di uscita $200\,^{\circ}\text{Hz}$ Risoluzione $^{(2)}$ $\leq 0,002\,^{\circ}\text{FS}$ Stabilità di lungo termine standard $^{(2)}$ $0,1\,^{\circ}$

⁽²⁾ Accuratezza e Risoluzione riferiti al Campo di Pressione Standard

Segnale di Uscita	420 mA, 2 fili	010 V, 3 fili	
Alimentazione (U)	828 Vcc	1328 Vcc	
Resistenza di Carico	(U-7 V) / 0,02 A	> 5'000 Ω	
Connessione Elettrica	Connettore-Presa 723 (5 poli)		
	– Presa DIN 43650		
	 MIL Presa C-26482 (6 poli) 		
Programmazione	RS485 semi-duplex		
Isolamento	10 M Ω / 50 V		

10 Mio. di cicli di press. 0...100 %FS a 25 °C Resistenza alla pressione Resistenza alle vibrazioni 20 g, da 20 a 5'000 Hz Resistenza agli urti 20 g seno 11 ms Protezione IP65 Conformità CF EN da 61000-6-1 a -4 (con cavo schermato) Materiale a contatto con gli elementi ambientali Acciaio inossidabile 316L (DIN 1.4435) Alterazione del volume morto G1/4 femmina (2 per lato di pressione) Attacchi di raccordo della pressione Serie 39 X per Pressioni Basse: ≈ 475 g Peso Serie 39 X per Pressioni Medie: ≈ 750 g

Opzioni

 Versioni per applicazioni in zone di rischio / Altri campi di pressione / Alimentazione a 32 V / Uscita a cavo elettrico / Riempimento d'olio: olio fluorizzato (compatibile con O₂), olio d'oliva, olio per basse temperature / Altri tipi di collegamenti

Doppio sensore con circuito elettronico. In questo stato, i sensori vengono montati sugli impianti di collaudo e collaudati nei forni a lotti di 100 unità; successivamente vengono montati negli alloggiamenti della Serie 39 X per Pressioni Basse.

Fascia di errore del Campo della Pressione Differenziale

La fascia di errore della pressione differenziale (in % del campo di misurazione della pressione differenziale) è calcolato come seque:

Fascia di errore del campo della pressione differenziale =

Max. Fascia di Errore del cam. di press. diff. X Cam. di Press. Diff. Cam. di Press. Diff.

Esempio: Pressione Standardi = 10 bar Pressione Differenziale = 4 bar. Fascia di Errore (in %FS) della pressione differenziale = 0.1 x 10/4 = 0.25%

Compensazione polinomiale

Si usa un modello matematico per ricavare il valore esatto della pressione (P) dai segnali misurati dal sensore di pressione (S) e dal sensore di temperatura (T). Il microprocessore all'interno del trasmettitore calcola P utilizzando il seguente polinomio:

$P(S,T) = A(T)\cdot S^0 + B(T)\cdot S^1 + C(T)\cdot S^2 + D(T)\cdot S^3$

Con i seguenti coefficienti A(T)....D(T) che dipendono dalla temperatura:

$$\begin{split} A(T) &= A_0 + A_1 \cdot T + A_2 \cdot T^2 + A_3 \cdot T^3 \\ B(T) &= B_0 + B_1 \cdot T + B_2 \cdot T^2 + B_3 \cdot T^3 \\ C(T) &= C_0 + C_1 \cdot T + C_2 \cdot T^2 + C_3 \cdot T^3 \\ D(T) &= D_0 + D_1 \cdot T + D_2 \cdot T^2 + D_3 \cdot T^3 \end{split}$$

Il trasmettitore è collaudato in fabbrica a vari livelli di pressione e di temperatura. I corrispondenti valori misurati di S, unitamente ai valori esatti della pressione e della temperatura, permettono di calcolare i coefficienti $A_0...D_3$. Questi vengono scritti nella memoria EEPROM del microprocessore.

Quando il trasmettitore di pressione è in funzione, il microprocessore misura i segnali (S) e (T), calcola i coefficienti in base alla temperatura ed ottiene il valore esatto della pressione risolvendo l'equazione P(S,T).

Le elaborazioni e le conversioni sono eseguite almeno 200 volte al secondo a seconda del formato dei segnali.

La risoluzione è pari allo 0,002% della pressione standard.

⁽¹⁾ Linearità + Isteresi + Ripetibilità + Errore di Temperatura