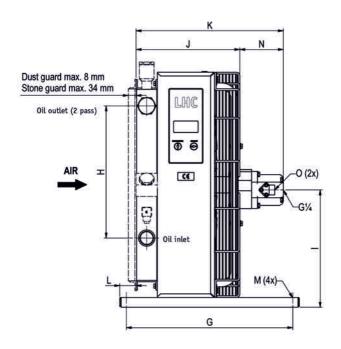
Scambiatori Aria/Olio LHC

- Applicazioni Industriali e Mobile
- Capacità di raffreddamento fino 300 Kw

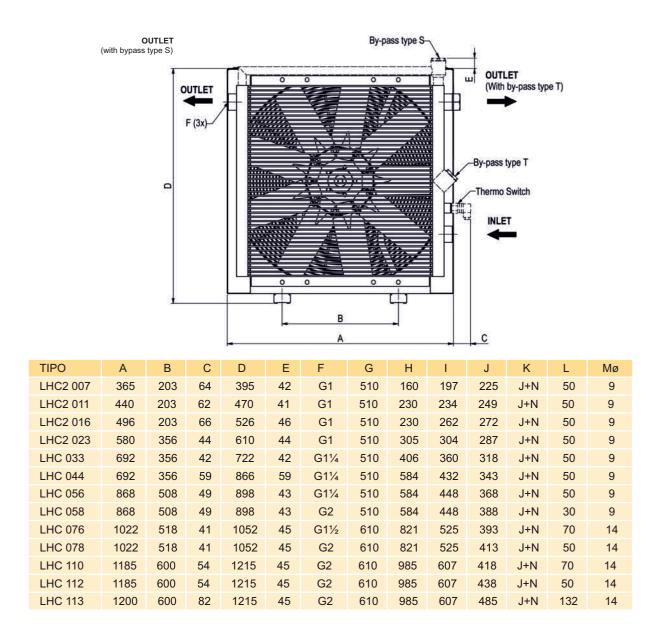
Scambiatori Aria/olio LHC-X

- Versione speciale ATEX, approvata per applicazioni dove può esserci il pericolo di esplosioni

Scambiatori Aria/olio LHC-M

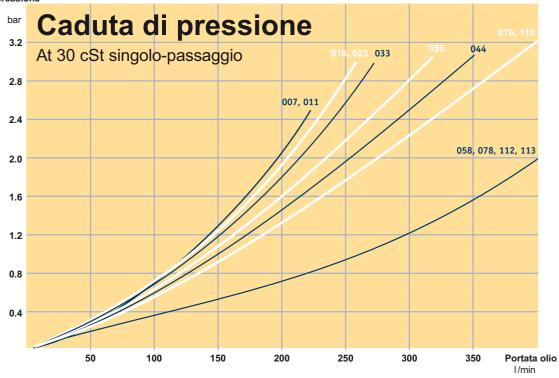

- Adattati per poter meglio sopportare attacchi di corrosione tipo ambienti marini.

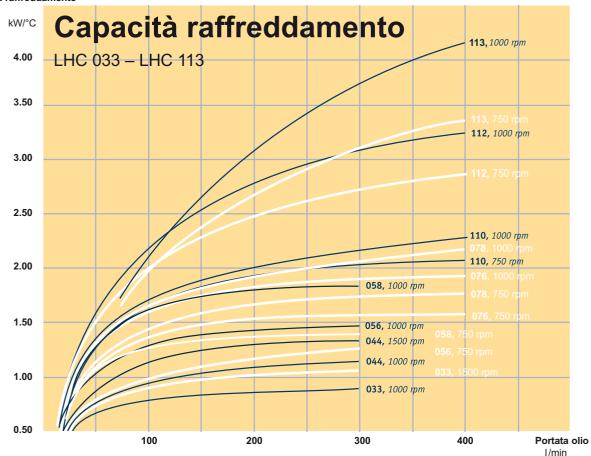
LHC-M e LHC-X

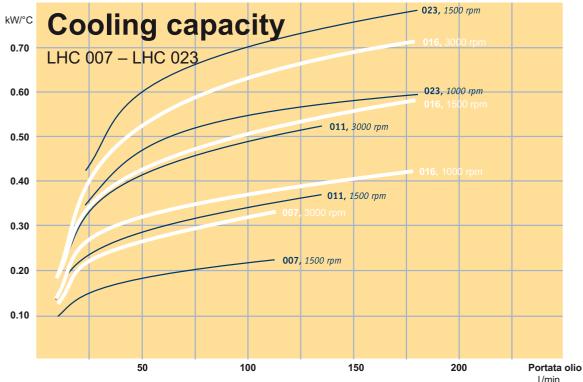

Gli scambiatori aria/olio sono anche disponibili in due versioni, speciali LHC-X (ATEX version), approvate per applicazioni in ambienti esterni esplosivi.

LHC-M adattato per poter meglio affrontare gli attacchi della corrosione, per esempio in applicazioni marine.

	TIPO	Velocità ventola rpm	Capacità ventola kW	Peso kg (approx)	Velocità max ventola rpm @ 40 °C	Livello rumorosità LpA dB(A) 1m*
LHC2 007		1500	0.10	10	3500	62
		3000	0.65	10	3500	79
	LHC2 011	1500	0.20	15	3500	67
		3000	1.50	15	3500	82
	LHC2 016	1000	0.10	18	3500	60
		1500	0.35	18	3500	70
		3000	2.50	18	3500	86
	LHC2 023	1000	0.15	30	3500	64
		1500	0.50	30	3500	76
	LHC 033	1000	0.65	40	2900	75
		1500	2.00	40	2900	85
	LHC 044	1000	0.70	56	2900	77
		1500	2.00	56	2900	86
	LHC 056	750	0.75	70	2400	74
		1000	1.80	70	2400	82
	LHC 058	750	0.75	77	2400	75
		1000	1.80	77	2400	83
	LHC 076	750	0.70	105	2200	80
		1000	1.60	105	2200	87
	LHC 078	750	0.70	111	2200	81
		1000	1.60	111	2200	88
	LHC 110	750	1.70	117	1900	85
		1000	4.00	117	1900	91
	LHC 112	750	1.70	125	1900	86
		1000	4.00	125	1900	92
	LHC 113	750	1.70	184	2400	87
		1000	4.00	184	2400	93
LHC 200		prego contattate	ci per maggiori info	ormazioni		


^{* =} Tolleranza rumorosità ± 3 dB(A).


MOTORE	Cilindrata cm³/r	N LHC2 007 – LHC2 023	N LHC 033 – LHC 112	O Attacchi angolari 90°	Max. pressione di lavoro bar
Α	8.4	91	133	G1/2	250
В	10.8	98	138	G1/2	250
С	14.4	101	144	G1⁄2	250
D	16.8	105	148	G3/4	250
Е	19.2	110	151	G3/4	250
F	25.2	120	165	G3/4	250


Caduta di pressione

Capacità raffreddamento

Capacità raffreddamento

Tolleranza sulla capacità di raffreddamento ± 10% kW.

Costruzione sigla modelli LHC

Tutte le posizioni devono esser compilate in fase di ordine

LHC2 - 016 -В-50 -S20 -S-EXAMPLE: 2

1. SCAMBIATORI ARIA/OLIO CON MOTORE IDRAULICO=LHC/LHC2

2. TAGLIA SCAMBIATORE

007, 011, 016, 023, 033, 044, 056, 058, 076, 078, 110, 112 and 113.

3. CILINDRATA MOTORE **IDRAULICO**

Nessun motor	=O	
Cilindrata	8.4 cm³/r	= A
Cilindrata	10.8 cm³/r	= B
Cilindrata	14.4 cm³/r	= C
Cilindrata	16.8 cm ³ /r	= D
Cilindrata	19.2 cm ³ /r	= E
Cilindrata	25.2 cm ³ /r	= F
Speciale = X		

(X: pressione, cilindrata, taglia, etc devono essere indicate in un linguaggio semplice) SPECIFICHE TECNICHE

50 °C 2 2 bar

50 C, Z.Z bai	- 123
60 °C, 2.2 bar	= T26
70 °C, 2.2 bar	= T27
90 °C, 2.2 bar	= T29

Costruiti con valvola di bypass

a due passaggi* e termostato

6. CARTER DI PROTEZIONE

Nessun carter	=O
Carter antisasso	=S
Carter antipolvere	=D
Carter antipolyere e sassi	=P

7. STANDARD/SPECIALE

Standard	= O
Speciale	= Z

4. TERMOSTATO Nessun termos 40 °C = 4050 °C = 50 60 °C = 60 70 °C = 70 80 °C = 80 90 °C = 90

5. MATRICE SCAMBIATORI

Standard	= 000
Due-passaggi	= T00
Costruiti con valvola di	bypass
a singolo-passaggio	
2 har	= \$20

0	. 4	Lancing and a
8 ba	ar	= S80
5 ba	ar	= S50
2 00	3 1	- 320

Costruiti con valvola bypass a due-passaggi*

2 bar			= T20
5 bar			= T50
8 bar			= T80

Costruiti con valvola di bypass a singolo passaggio e termostato

50 °C, 2.2 bar	= S25
60 °C, 2.2 bar	= S26
70 °C, 2.2 bar	= S27
90 °C, 2.2 bar	= S29

FLUIDI

Olio minerale secondo	HL/HLP DIN-51524
Emulsione Acqua/olio	HFA, HFB in secondo CETOP RP 77H
Acqua e glicole	HFC secondo CETOP RP 77H
Estere fosforico	HFD-R secondo CETOP RP 77H

MATERIALI

i acco radiante	Allullillio
Ventola e mozzo	Fibra di vetro
	rinforzato
	polipropilene/
	Alluminio
Alloggiamento ve	entola Acciao
Protezione ventol	la Acciaio
Altre parti	Acciao
Trattamento	Antistatico
superficiale v	verniciato a polvere

Pacco radiante Alluminio

MATRICE SCAMBIATORI

Pressione massima	
di lavoro statica	21 bar
Pressione di lavoro	
dinamica	14 bar*
Limite trasferimento calore	+/-6%
Massima temperatura olio	
in ingresso	120 °C

* Testati secondo normativa ISO/DIS 10771-1

CURVE CAPACITA' DI RAFFREDDAMENTO

Le curve di rendimento in questo data sheet fanno riferimento a test secondo EN 1048 e sono stati realizzati usando olio ISO VG 46 a 60°C

CON I SEGUENTI DATI DI PROCESSO CONTATTATECI

Temperatura Olio Viscosità Olio > 100 Cst Ambienti aggressivi Ambienti ricchi di particelle Applicazioni in altitudine

DIAGRAMMA CONNESSIONI

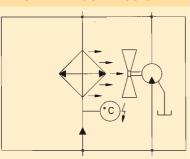


Diagramma connessioni per scambiatori aria/olio serie LHC.

Le informazioni in questo data sheet potrebbero cambiare senza avviso.

Accessori

Scegli il giusto accessorio per aumentare la resa e la vita dello scambiatore, allo stesso tempo risparmiando in manutenzione e riparazioni

valvola bypass integrata per il controllo della pressione

Consente all'olio di bypassare il pacco radiante (matrice) se la caduta di pressione è troppo alta. Riduce il rischio di scoppio. Ad esempio con partenze a freddo e con picchi temporanei di pressione. Disponibile per single-pass o matrice progettata a due passaggi.

Termostato

Sensore con set point fisso. Consente una gestione più conveniente e un funzionamento migliore e più ecologico. si ha il controllo automatico del ventilatore, sia on che off.

Valvola di by-pass controllo temperatura integrata

Consente all'olio di bypassare la matrice, se la caduta di pressione è maggiore di 2,2 bar o inferiore temperatura scelta. Si chiude il bypass quando la temperatura dell'olio aumenta. Diverse temperature di chiusura disponibili. Realizzate per matrici SinglePass o a due passaggi.

Occhiello di sollevamento Per una semplice installazione e movimentazione.

Valvole esterne di controllo temperatura a 3-vie

Stesso funzione delle valvole bay-pass di controllo ma posizionati esternamente.

Nota: da ordinare separatamente.

Protezioni antisasso e antipolvere Protezzioni cts componenti e sistemi per condizioni gravose.